Enhancing the Inverse Method with State Merging

É. André* L. Fribourg** R. Soulat**

* Laboratoire d'Informatique de Paris Nord, Université Paris 13, France
** Laboratoire Spécification et Vérification, ENS Cachan, France

NFM 2012, Norfolk, VA

April, 5, 2012

É. André*, L. Fribourg**, R. Soulat** (* l Enhancing the IM with Merging (NFM '12)

Motivations

• Reduce the state explosion during Inverse Method (IM) analysis

• *IM* to generate a larger constraint

Outline

- Parametric Timed Automaton
- State Merging
- Inverse Method
- Results
- Conclusion and Future Work

• Finite state automaton (sets of locations)

• Finite state automaton (sets of locations and actions)

- Finite state automaton (sets of locations and actions) augmented with
 - ► A set X of clocks (i.e., real-valued variables evolving linearly at the same rate)

- Finite state automaton (sets of locations and actions) augmented with
 - ► A set X of clocks (i.e., real-valued variables evolving linearly at the same rate)

- Features
 - Location invariant : property to be verified by the clocks to stay at a location

- イロト (個) (注) (注) (注) 注 り(()

- Finite state automaton (sets of locations and actions) augmented with
 - A set X of clocks (i.e., real-valued variables evolving linearly at the same rate)

Features

- Location invariant : property to be verified by the clocks to stay at a location
- Transition guard : property to be verified by the clocks to enable a transition

- Finite state automaton (sets of locations and actions) augmented with
 - A set X of clocks (i.e., real-valued variables evolving linearly at the same rate)

Features

- Location invariant : property to be verified by the clocks to stay at a location
- Transition guard : property to be verified by the clocks to enable a transition
- ► Clock reset : clocks can be set to 0 at each transition

- 4 ロ ト 4 周 ト 4 ヨ ト - ヨ - り Q O

Parametric Timed Automaton (PTA)

- Finite state automaton (sets of locations and actions) augmented with
 - ► A set X of clocks (i.e., real-valued variables evolving linearly at the same rate)
 - ► A set *P* of parameters (i.e., unknown constants), used in guards and invariants

Features

- Location invariant : property to be verified by the clocks and the parameters to stay at a location
- Transition guard : property to be verified by the clocks and the parameters to enable a transition
- ▶ Clock reset : clocks can be set to 0 at each transition

States and Traces

- Symbolic state of a PTA : couple (q, C), where
 - q is a location,
 - ► C is a constraint (conjunction of inequalities) over the parameters and clocks
- Trace (time-abstract run) over a PTA: finite alternating sequence of locations and actions

Mergeable

- Mergeable Let s = (q, C) and s' = (q', C') be two states. s and s' are mergeable iff:
 - ightharpoonup q = q'
 - $ightharpoonup C \cup C'$ is convex

Mergeable

- Mergeable Let s = (q, C) and s' = (q', C') be two states. s and s' are mergeable iff:
 - ightharpoonup q = q'
 - ▶ C∪C' is convex

• Merged State $s'' = (q, C \cup C')$

Inputs and Outputs (1/2)

Inputs and Outputs (2/2)

- Input
 - ► A PTA A
 - \blacktriangleright A reference instantiation π_0 of all the parameters of \mathcal{A}
 - ★ Exemplifying a good behavior (all traces under π_0 correspond to good behaviors)

Inputs and Outputs (2/2)

- Input
 - ► A PTA A
 - \blacktriangleright A reference instantiation π_0 of all the parameters of \mathcal{A}
 - ★ Exemplifying a good behavior (all traces under π_0 correspond to good behaviors)
- Output : generalization
 - \triangleright A constraint K_0 on the parameters such that
 - $\star \pi_0 \models K_0$
 - ***** For all instantiation $\pi \models K_0$, the set of traces under π is the same as the set of traces under π_0

The General Idea of Our Method

Start with $K_0 = True$

- Compute the set S of reachable symbolic states under K_0
- 2 Refine K_0 by removing a π_0 -incompatible state from S
 - ▶ Select a π_0 -incompatible state (q, C) within S (i.e., $\pi_0 \not\models C$)
 - ▶ Select a π_0 -incompatible inequality J within C (i.e., $\pi_0 \not\models J$)
 - ► Add ¬J to Ko
- **6** Go to (1)

Until fix point (no more π_0 -incompatible states in S)

Theoretical results:

- Smaller set of symbolic states
- Output constraint is larger or equal
 - ► Let s, s' be two mergeable states
 - $s \pi_0$ -compatible, $s' \pi_0$ -incompatible
 - $s \cup s'$ is π_0 -compatible
- Let K_0 be the constraint output by IM_{merge}
 - $\blacktriangleright \pi_0 \models K_0$
 - ▶ For every $\pi \models K_0$, the set of traces of \mathcal{A} under π is the same as the set of traces of \mathcal{A} under π_0

РТА	X	Р	IM			IM _{merge}			V C V
			t	States	М	t	States	M	$K_0 \subseteq K_{0 merge}$
AndOr	4	12	0.112	16	1,262	0.101	13	1,187	=
Flip-Flop	5	12	0.183	14	1,692	0.227	14	1,762	=
Latch	8	13	1.18	18	3,686	0.621	12	2,662	Ç
BRP	7	6	4.29	428	25,483	7.015	426	25,845	=
WLAN	2	8	220.157	7,038	733,044	286.141	6,020	1,408,702	=
SPSMALL ₁	10	26	1.578	31	5,098	1.642	31	5,442	=
SPSMALL ₂	28	62	-	-	overflow	593	397	180,888	-
SIMOP	8	7	18.959	1,108	43,333	5.179	239	14,371	Ç
CSMA/CD	3	3	0.801	240	6,580	0.947	240	7,049	=
Jobshop	3	8	1.865	253	10,658	1.147	118	5,221	Ç
Mutex 3	3	2	0.802	307	14,598	0.671	241	11,934	=
Mutex 4	4	2	22.373	4,769	373,900	22.03	3,287	260,962	=

TABLE: Comparison between IM and IM_{merge} . Results obtained with IMITATOR 2

- Small overcost when no or little merging is found
- Allows to perform case studies that were too big for IM
- Can find larger constraints, hence better robustness results

Conclusion and Future Work

- Conclusion
 - Larger constraint generated
 - Small overcost in worst case studies
 - ▶ Improvement in both memory usage and computational time for real life case studies
- Ongoing and future work
 - Ongoing: Application to a real industrial case studies with industrial partners
 - ► Future work : Improve the merging condition